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ABSTRACT 

 
With more advanced technology nodes and device architectures being used in high volume semiconductor manufacturing, 
process control and metrology are facing ever-greater challenges. More advanced metrology approaches have been 
emerging to cope with these challenges. This study investigates machine learning predication as a complementary method 
to optical critical dimension (OCD) measurements. We have evaluated the suitability of machine learning to address high 
volume manufacturing metrology requirements for applications in both front end of line (FEOL) and back end of line 
(BEOL) sectors from advanced technology nodes. In the FEOL sector, we have demonstrated initial feasibility to predict 
the fin CD values from an inline measurement using machine learning. In the BEOL sector, machine learning is shown to 
provide direct prediction of electrical resistance using spectra collected from both OCD measurement sites and electrical 
test (e-test) sites. The predicted resistance correlation to the actual e-test value is improved in comparison with OCD results 
for multiple metal levels of various products. It is also shown that e-test predictions by machine learning may assist to 
alleviate the challenges that conventional metrology approaches are facing when the metal linewidth becomes smaller. 
Furthermore, impact of number of samples in training set was investigated and it was found that reducing number of 
samples in training set does not degrade the e-test correlation and Total Measurement Uncertainty (TMU) significantly. 
This paper demonstrates that predictive metrology based on machine learning is an advantageous and complementary 
technique for high volume semiconductor manufacturing. Together with conventional OCD measurements, a machine 
learning approach could successfully overcome complex metrology challenges in advanced semiconductor manufacturing. 
 
Keywords:  Machine Learning, High Volume Manufacturing, E Test, Process Control, Optical Metrology, Metrology 
Budget, Model Complexity 
 

1. INTRODUCTION 

 
In recent years, the combination of device scaling, complex 3D device architecture and tightening process tolerances have 
strained the capabilities of metrology tools to meet process needs. Two main categories of approaches have been taken to 
address the evolving process needs. In the first category, new hardware configurations are developed to provide more 
spectral sensitivity. Most of this category of work will enable next generation optical metrology tools to try to maintain 
pace with next generation process needs. In the second category, new innovative algorithms have been pursued to increase 
the value of the existing measurement signal. These algorithms aim to boost sensitivity to the measurement parameter of 
interest, while reducing the impact of other factors that contribute to signal variability but are not influenced by the process 
of interest. 
 
Machine learning enables computer systems to learn with data without being explicitly programmed. It is incredibly 
powerful to make predictions or calculated suggestions based on advanced algorithms as well as large amounts of data. 
Machine learning and analytics was used to accurately predict the electrical performance of deep trenches and metal lines 
in the past [1, 2]. This paper has evaluated the suitability of machine learning to address high volume manufacturing 
metrology requirements in both front end of line (FEOL) and back end of line (BEOL) sectors from advanced technology 
nodes. 
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2. BACKGROUND AND MOTIVATION 

 
Scatterometry, also called Optical Critical Dimension (OCD) metrology, is an optical measurement technique based on 
Rigorous Coupled Wave Analysis (RCWA), in which the light diffracted from a periodic structure is used to characterize 
the targeted geometric profile. Scatterometry has been proven as an advantageous method to provide the full profile 
information of various applications in FEOL and BEOL. Fin profile is critical for device performance and one application 
was investigated in this paper to obtain fin information at earlier process step by using machine learning together with 
OCD measurements. 3D geometric parameters of BEOL metal lines were successfully measured by OCD metrology and 
they demonstrated good correlation to physical cross sections and/or electrical resistance for BEOL etch and Chemical-
Mechanical Planarization (CMP) processes [3]. In this work, machine learning was utilized to predict e-test resistance 
results based on reference data without explicit modeling, directly from reflectance spectra obtained with scatterometry 
tools after Cu CMP. The e-test prediction by machine learning is complementary to the OCD measurements in several 
aspects for BEOL Cu CMP applications. First, due to OCD modeling complexity, correlations between multiple modeling 
parameters can possibly cause accuracy issues. Second, to qualify an OCD model, the cross section reference is needed, 
which is mostly obtained by cutting wafers for Transmission Electron Microscopy (TEM). The TEM data acquisition 
period is usually days or even weeks, and the quantity is generally from a few dies of several wafers, very limited in 
comparison with e-test reference, which can be from a large number of wafers or lots. Lastly, machine learning is able to 
use e-test data directly as reference, providing feasibility for ultimate device performance monitoring or control. The e-
test results are predicted early in the process flow (after Cu polishing) and this can assist process engineers to make 
actionable decisions.  
 
However, e-test predictions by machine learning cannot provide geometric data like OCD modeling does unless there is 
sufficient reference (training) data regarding the parameter in question—which is usually not the case. These geometric 
parameters can provide detailed process information and enable more thorough process monitoring on BEOL thin film 
depositions, etch, and Cu polishing. This work investigates the capability of machine learning as a complementary 
technique to OCD metrology in a high volume manufacturing scenario. A combination of these two methods can be an 
advantageous approach in feedforward or feedback flows to optimize, control or monitor processes, thereby overcoming 
current and future semiconductor metrology challenges.  
 

3. RESULTS 

 

3.1 Fin CD Measurements 
In this work, the fin CD was determined by using a machine learning technique.  The variation of fin CD for wafers of 
four different products resulting from a fin hard mask Reactive Ion Etch (RIE) process was evaluated by OCD and a 
reference metrology source. A representative structure resulting from the fin hard mask reactive ion etch is presented in 
Figure 1. 

 
Figure 1:  Representative structure from fin hard mask RIE 

 
Wafers of four different products from eight process chambers were evaluated by OCD. As demonstrated in Figure 2, 
correlation of OCD and reference metrology provided linear correlation with R2 less than 0.31 and slope less than 0.6 for 
each of the 4 products. Some chambers demonstrate significant variation of OCD values between wafers, suggesting a 
chamber related effect on the wafer structure. 
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Figure 2:  Correlation of reference metrology to OCD fin CD 

Figure 3:  Correlation of reference metrology to predicted fin CD by machine learning 

 
Figure 4:  Product D wafers evaluated with machine learning and standard OCD.   
 
Some chambers were observed to have wide wafer to wafer variability of fin CD as reported from the OCD model. The 
reference metrology did not show a chamber dependent distribution. Applying machine learning to the same wafers 
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provided significant improvement in the linearity as demonstrated through R2 and slope as shown in Figure 3. Figure 4 
further demonstrates that chamber E provided significant variations of OCD that were not observed in the reference 
metrology. Applying machine learning to the optical spectra provided a similar response which removed the chamber 
dependence on the variability of the OCD. 
 

3.2 BEOL E-Test Prediction 

In this paper, two groups of products with different BEOL measurement scenarios were investigated: for product group A, 
the OCD measurement site being used for OCD modeling, was the same site as e-test site; for product group B, the OCD 
site and e-test site are different and located at the two distant pads within die.  
 
For product group A, scatterometry spectra and e-test data were collected from the same site and e-test data were used as 
reference for machine learning. A solution was built up from machine learning and used for subsequent e-test data 
predictions. With the machine learning solution, untrained spectra can be interpreted to predict e-test data, either inline 
from the tools or offline from a computer with the appropriate software. Figure 5(a) shows the correlations of OCD Trench 
Height to actual e-test, and predicted e-test to actual e-test data. Cu Trench geometric results such as Trench Height and 
Trench BCD were obtained from a Nova OCD model, as shown in Figure 5(a). The key parameter Cu Trench Height is 
usually used for Cu polishing process monitoring and control. As it can be seen, OCD Trench Height has good correlation 
to the actual e-test Rs, while predicted e-test Rs has even better correlation to the actual e-test. R2 is better for machine 
learning and the scatter of the data about the straight line fit was seen to improve for Machine Learning also relative to 
OCD data. These results can be well explained by various factors such as possible poor quality of TEM reference, 
correlations in the OCD model, and much larger quantity of e-test reference data than TEM reference being used.  
 
In product group B, OCD measurement site and e-test site were different. Scatterometry spectra were measured at both 
sites, for OCD modeling (OCD site) and machine learning (OCD site and e-test site). Figure 5(b) shows the correlations 
of OCD Trench Height to actual e-test, and predicted e-test to actual e-test results. For product group B, because OCD 
Trench Height was obtained from a different site where e-test was conducted, the correlation between Trench Height and 
actual e-test is worse than that of product group A. We believe this was caused by site-to-site Cu trench height difference 
within the die. This within die variation could be potentially gauged by e-test prediction at two sites, which will be our 
investigations in the future. By using machine learning, the predicted e-test results from OCD site have improved 
correlation to the actual e-test in comparison with OCD Trench Height. When machine learning was applied on the spectra 
collected from the e-test site, the correlation of the predicted e-test to the actual e-test was further improved, very close to 
that of product group A.  
 
For both product groups, the predicted e-test data by machine learning demonstrate better correlations to the actual e-test 
than the conventional OCD measurement. Furthermore, we investigated a large number of samples (sites) from different 
Cu metal levels, which is shown in Table 1. Figure 6 presents correlation results for all these metal levels and we can 
observe similar results like those in Figure 5, except for M2 of product group A, in which the correlation R2 of the predicted 
e-test to the actual e-test was about 0.79, not as good as other e-test predictions (further analysis and optimizations will be 
explored for this application).  
 
It can also be seen that for product group A, the higher the metal level, the better the correlations of both OCD trench 
height and predicted e-test to the actual e-test. This results from the fact that if the metal level is higher, the top Cu trench 
height is larger, which blocks more light and reduced the spectral contributions of underneath Cu lines, so both OCD trench 
height and predicted e-test is more accurate because the top Cu lines dominate the sensitivity of scatterometry spectra. In 
product group B, due to site-to-site Cu trench height difference, the correlation of Trench Height to the actual e-test is 
worse than that of the predicted e-test, particularly for metal level C5 & G1. As stated, a large number of untrained sites 
or wafers were investigated, and after the training was done, there were no observations of training becoming invalid over 
3 month interval. We expect this will continue to work if there is no process change. 
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Figure 5: The correlations of OCD Trench Height to actual e-test, and predicted e-test to actual e-test data for product 
group A (a) and B (b). OCD measurement site or “meas site” is the same as the e-test site within die for product group A, 
and different for product group B. 
 

 
Table 1: The numbers of samples (sites) for different metal levels being used in this work. 

Based on the results from Figure 6, the correlation R2 of the predicted e-test to actual e-test for different metal levels were 
plotted against the normalized Cu line pitch, as shown in Figure 7. Here the R2 values were calculated based on the best 
data for both OCD measurement site Trench Height or e-test site predicted e-test data stream from all products. As it can 
be seen, the R2 improvement in predicted e test is more significant for decreasing metal linewidth, indicating conventional 
OCD measurements face more challenges when the metal linewidth becomes smaller, while e-test predictions by machine 
learning can alleviate this issue. As OCD measurements can provide geometric profiles for Cu line and dielectric stack 
structure, which are missing in e-test predictions based on machine learning, incorporating two techniques will enable 
more comprehensive and accurate outputs for thorough process monitoring or control. This is becoming particularly 
significant as process technologies advance to 7nm process node and below. 
 
When machine learning is used in high volume manufacturing metrology, the number of samples that are needed for 
training becomes an important question. Using metal level C5 case as an example, we built up different machine learning 
libraries with different numbers of training samples, then apply them on the same untrained sites to investigate the impact 
of different training sets on the correlation to actual e-test.  
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Figure 6: The correlations of OCD Trench Height to actual e-test, and predicted e-test to actual e-test data for different metal levels of 
product group A (a) and B (b). Note all predicted e-test results were obtained from the scatterometry spectra collected at the e-test site. 
OCD measurement site or “meas site” is the same as the e-test site within die for product group A, and different for product group B. 
 

 
Figure 7: The correlation R2 of the predicted e-test to actual e-test for different metal levels versus the normalized Cu line pitch 

(FBEOL - far back end of the line). 
 

The results are shown in Figure 8. It’s noted that reasonable correlation was obtained even the verification set has wider 
range (~50% wider) than the training set, which means extrapolation was successful for this machine learning. It can be 
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seen that good correlation was obtained even only 20% of the original training set was used. If the process variability is 
well covered by training set, the reducing number of lots in the training set does not significantly degrade the correlation 
and Total Measurement Uncertainty (TMU), therefore in high volume manufacturing we might not need a large number 
of reference data for training set. In practice, as a rule of thumb, a certain number of lots were selected for training set 
based on reference ranges to cover the process variations. 
 

 

 

 
 

Figure 8: Impact of number of samples in training set. (a) Variability chart of e-test reference data (left) and predicted e-
test correlation to actual e-test on untrained sites. Plots for 100% means all training Lots were used in training; plots for 
20% means 20% of whole training lots was used for training. Note in e-test reference variability chart, training sets with 
larger lot numbers cover all training sets with smaller lot numbers; (b) Separated e-test correlation plots when the machine 
learning solution was trained by different number of lots; (c) Correlation R2 of e-test prediction plotted against the number 
of lots in training set; (d) TMU of e-test prediction plotted against the number of lots in training set. 
 
 

4. CONCLUSIONS 
 
In this work, the value of machine learning based prediction is demonstrated, leveraging OCD spectra from FEOL and 
BEOL applications and applicable reference metrology. In FEOL the feasibility of fin CD prediction using machine 
learning is established with improved correlation to reference metrology than from the fin CD measurement by OCD. For 
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BEOL, we have shown that predicted e-test results by machine learning have better correlations to the actual e-test data 
than conventional OCD measurements across multiple products and metal levels, particularly for decreasing metal 
linewidth. Multiple metal levels and spectral acquisition scenarios with large data sets are presented, verifying that 
predictive metrology based on machine learning can be an advantageous technique in high volume semiconductor 
manufacturing. Furthermore, the impact of training set size was evaluated and it was found that reducing number of lots 
in the training set did not significantly degrade the correlation and TMU, suggesting that a large volume of reference data 
may not be required for the training set. As OCD measurements can provide detailed geometric profiles for complex device 
structures, which are missing in e-test predictions based on machine learning, incorporating both techniques will enable 
more comprehensive and accurate outputs for thorough process monitoring and control in semiconductor manufacturing. 
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