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ABSTRACT 

 

Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing 

intended process splits.  Any in-line, nondestructive technique in the process flow to accurately predict these 

measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and 

process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly 

with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such 

as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over 

inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to 

sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test 

measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling.  

Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited 

(for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically 

testable. 

  

A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD 

measurement directly of the electrically-testable structures, even when they are not OCD-compatible.  By incorporating 

such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures 

is significantly improved.  Improvements in prediction capability for multiple types of in-die electrically-testable device 

structures is demonstrated.  To further improve the quality of the prediction of the electrical resistance measurements, 

hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used.  Hybrid metrology is the 

practice of combining information from multiple sources in order to enable or improve the measurement of one or more 

critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and 

thickness that can have second-order effects on the electrical resistance of the test structures.  By accounting for such 

effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test 

measurements is achieved.  Using both types of solution—incorporation of fast reference-based machine learning on non-

OCD-compatible test structures, and hybrid metrology combining OCD with XRF technology—improvement in BEOL 

cycle time learning could be accomplished through improved prediction capability. 
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1. INTRODUCTION 
 

There are many different metrology techniques that are used for process control of back-end of line (BEOL) structures. It 

is necessary to monitor many different parameters for metal lines, including the line height, critical dimension (CD), side-

wall angle (SWA), and the width of the barrier materials.  Scatterometry, also referred to as Optical Critical Dimension 

(OCD), is a model-based technique which is capable of high throughput, non-destructive measurements. The spot size can 
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capture hundreds of metal lines in a single measurement.  Its other benefits include the ability to extract measurements 

from buried structures and to measure other parameters that cannot be captured by a top-down image-based measurement 

technique, like the line height mentioned above.  Critical-Dimension Scanning Electron Microscopes (CD-SEM) can be 

used to acquire a top-down image, but these usually capture only a few metal lines. Due to the pixel sizes that are often 

employed to take advantage of the small spot size, large area images are too time and resource intensive to regularly 

acquire.  Imaging and measuring metal structures can also be challenging, as the secondary electron yield and interaction 

energy is so great that edges are more obscured.  

 

X-ray techniques are useful methods of obtaining compositional and thickness information from materials.  In this work, 

we use Low Energy X-Ray Fluorescence (LE-XRF). In XRF, incoming x-rays generate electron-hole pairs, and x-rays 

with characteristic energies are emitted when different electrons fill that hole. Each elemental species has a characteristic 

set of x-ray energies that may be emitted, so we obtain both the species information and a proportional “count” of different 
species within the exposed region (spot) of the sample, which has a size similar to the OCD spot.  Electrical tests directly 

measure the device performance by probing pads attached to structures that are designed to mimic portions of the chip 

circuitry or detect process defects. These are high throughput tools, but they often have such dense sampling that the 

number of wafers per hour (WPH) that are measured can be surprisingly low. Additionally, as the probes directly contact 

the wafer, there are risks of localized damage to the pads which may change subsequent readouts. 

 

A solution to the dependence on inline electrical tests (ILT) lies in a fast reference-based machine learning capability that 

allows for OCD measurement directly on the electrically-testable structures, even when they are not OCD-friendly (for 

example, in cases where the gratings are on top of extremely complex structures). Incorporating such direct OCD 

measurements on ILT structures significantly improves the correlation to and prediction of resistance of BEOL electrical 

test structures.  To further improve the quality of the prediction to the electrical resistance measurements, hybrid metrology 

using the OCD measurements as well as X-ray metrology (XRF) is used.  Hybrid metrology is the practice of combining 

information from multiple sources in order to enable or improve the measurement of one or more critical parameters1,2. 

Here, the XRF measurements are used to provide a second source of information about how much copper is present, as 

well as detect changes in barrier layer thickness that can have second-order effects on the electrical resistance of the test 

structures.  By accounting for such effects with the aid of the XRF, further improvement in the OCD correlation to 

electrical test measurements is achieved.  Using both types of solution—incorporation of fast reference-based machine 

learning on non-OCD-compatible test structures, and hybrid metrology combining OCD with XRF technology—
improvement in ILT prediction capability is demonstrated. 

 

 

 

2. DESIGN OF EXPERIMENT 
 

2.1 Description of test structures 
The selected test structures include both a “device” (i.e. electrically testable) structure, as shown in Figure 1, and a standard 

OCD pad. The device structure selected was from a macro family that is large enough for the OCD and x-ray spot sizes 

and is commonly used for electrical testing. The standard OCD pad is the same size but intentionally designed with no 

other patterning underneath, so as to minimize noise from structures that are not of interest at the level. As indicated in 

Table 1, the metrology array for this BEOL level did not share the same normalized trench width and pitch with the device 

structure; this was to enable comparison of two different macro designs, as it is common to have the metrology and device 

macros designed without the other in mind.  
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.

 
Figure 1:  Schematic of device test structure. 

 

 

Table 1:  Test Structure Details 

Array Normalized 

Linewidth 

Normalized 

Pitch 

OCD 0.34 0.75 

Device 0.59 1 

 

 

Both test structures share the same general configuration3, depicted in Figure 2. Trenches etched into a dielectric are lined 

with TaN and Co, respectively. Then copper is deposited, filling the remaining cavity, and the whole structure is polished 

to the desired height. After polishing, the copper is selectively-capped with Co and some films to prevent further oxidation.  

 

     
Figure 2:  Schematic of test structures (images from reference 3). 

 

2.2 Wafer splits to induce variation 
Several different parameters were varied in order to produce a robust design of experiment (DOE).  The lithography was 

done according to the same random dose across each wafer, in order to vary the linewidths of the trenches.  Five different 

exposures were used, wider and narrower than the process of record (POR) condition, (POR, --, -, +, ++).  Four different 

liner thicknesses were used (POR, -, +, ++) to vary the copper CD within the trench, and three different CMP times were 

used in order to vary the heights of the copper (POR, + 5 seconds, - 5 seconds). 

 

2.3 Sampling 
Due to capacity and throughput for these toolsets, the number of die measured varied by toolset.  The entire wafer is 

measured with OCD, while XRF is used to measure 10 die per wafer. The electrical measurements are obtained over the 

entire wafer as well. OCD spectra were collected from both test structures, while electrical and XRF measurements were 

only completed on the device structure. All data were collected post-cap. 

 

 

 
 

Ammeter
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3. RESULTS AND ANALYSIS 
 

3.1 Electrical treatment of test structures 

The analysis presented in sections 3.2 and 3.3 rely upon the following treatment of the post-CMP test structures. For a 

single, uniform metal wire, the resistance can be calculated initially as: 

 

 𝑅 =  𝜌𝐿𝐴  (1) 

 

For each material, R is the resistance of the metal line, 𝜌 is the resistivity, L is the total line length of the metal line, and 

A is the cross-sectional area of the line. The length of the metal line is approximated well with the design data, and should 

include all relevant connections between the array in question and the pads where the tester pins will make contact. 

Resistivity, generally a function of cross-sectional area, can be determined experimentally and refined by comparing 

results to literature models. In this work, IBM models for resistivity were employed.  

 

Given Cu is a very low resistivity metal, it is the primary conductor in the Figure 2 configuration. Thus, a simplified 

relationship from Eq (1) can be used, which will be referred to as Model #1 [Eq (2)]. 

 

Model #1 𝑅 ∝  1𝐴 (2) 

 

In the future analysis of the structure presented in Figure 2, a key assumption is that each of the three metal components 

– TaN, Co, and Cu – can be treated as single resistors, in a parallel configuration. Thus, the total resistance would be: 

 

 1𝑅𝑇𝑜𝑡𝑎𝑙 =  1𝑅𝐶𝑢 +  1𝑅𝐶𝑜 + 1𝑅𝑇𝑎𝑁 
(3) 

 

However, given  𝜌𝑇𝑎 ≫  𝜌𝐶𝑜 > 𝜌𝐶𝑢 , we simplify Eq (3) to: 

 

Model #2 
1𝑅𝑇𝑜𝑡𝑎𝑙 =  1𝑅𝐶𝑢 +  1𝑅𝐶𝑜 (4) 

 

 

3.2 Preface to Results 

In the following charts, the actual ILT-measured device structure resistance will be shown on the Y-axis data. The results 

will progress from analysis of ILT correlations to single metrology techniques, then to hybrid metrology, and finally to 

hybrid metrology with machine learning. The chart titles are colored according to the source of the data on the X-axis, 

and the scheme is depicted in Figure 3. 

 

 
Figure 3:  Results legend. 

 

 

 

OCD

XRF

Hybrid (OCD + XRF)

Hybrid + ML
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3.2 OCD-only solution 
3.2a  Model #1 – Cu Area 

Model #1 is the basis for the initial method of predicting electrical yield of a structure. In this set of analysis, an OCD 

model is used to find the cross-sectional area of the copper line. A model was only built for the OCD pad (Figure 4), from 

which the cross-sectional area was found. For the device structure, the area was scaled based on the known design 

parameters.  

 

 
Figure 4:  OCD model. 

 

Spectra were collected on the OCD pad, as well as the device pad.  Spectra from the OCD pad are interpreted based on 

the OCD model, allowing us to calculate the cross-sectional area of the Cu line and the liner materials. These results are 

scaled because the device pad has different intended dimensions than the OCD pad. The scaling speeds up the time to 

solution as it reduces the modeling setup time, and the same trends can be expected across structures and when compared 

to the ILT results.  Figure 5 demonstrates the predicted metal line resistance from this initial treatment to the actual 

structural resistance as measured by inline test. With an R2 of 0.5, some general trends may be able to be detected, but 

finer process control would not be possible only using these provided and measured values. 

  

Figure 5: Comparing cross-sectional area of Cu to measured resistance. 

 

In Figure 6, we take the calculated cross-sectional area of both the copper line and the cobalt liner and use this information 

to calculate the expected resistance, based on equation (4).  We again see evidence of a trend, but with R2 around 0.44, 

more improvement is needed. 
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Figure 6:  Calculating resistance based on OCD’s measured cross sectional area of Co liner and Cu and comparing to measured 

resistance. 
 

 

3.3 XRF vs eTest 

Figure 7 shows the correlation between the XRF measurement of Cu and Co quantity on the device structure to the 

measured ILT resistance from the same structure. The purpose of investigating these correlations is to confirm that there 

is, in fact, information in the XRF signal that potentially can be used to further improve predictions of ILT resistance.  
 

 

 
Figure 7: Comparing XRF data to measured resistance. For the Co count, the different Co liner thickness splits are shown in different 

colors.  The presence of a nominally-constant Co cap on top of the Cu line is adding some noise to the Co measurement, likely 

reducing the quality of the correlation. 
 

 

3.4 Hybrid Prediction vs eTest 

A hybrid scheme is explored in order to combine inputs from both the OCD and XRF and compare that to the ILT.  In 

previous work2, this hybrid configuration has been shown to improve sensitivity to structural parameters. As compared to 

the OCD-only results (using only the die that are also measured with XRF, as opposed to the results shown in Figure 6 

which use all die on the wafer), the R2 improves considerably, showing a large benefit to the hybridization, as shown in 

Figure 8. 
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Figure 8:  Hybrid Predicted Resistance (on right) compared to ILT.  On the left are the results without the use of XRF.  In both sets 

of data, the same die and the same measurement target (device) were used. 
 

3.5 Machine Learning Results 
To continue to improve the results described, Nova’s machine learning capability was employed. The results are shown 

in Figure 9.  This results in another large improvement in R2, showing that this technique of combining hybrid metrology 

(OCD and XRF) with machine learning is effective in predicting resistance. Such predictive capability can enable a reliable 

dynamic ILT sampling.  For example, for those wafers or lots where the hybrid + machine learning results are passing, 

ILT sampling can be reduced, but for those results that are failing, the ILT sampling can be increased in order to take a 

“closer look”—or, the wafers can be scrapped to avoid unnecessary processing. Although for this work the ILT, OCD, 

and XRF measurements were done at the same point in the process, making dynamic ILT sampling less appealing, the 

concept can be applied to other applications where there is significant processing between the OCD/XRF measurements 

and the ILT measurements.  

 

 
Figure 9:  Hybrid + Machine Learning Predicted Resistance compared to ILT. The same sampling was used here as was used for 

the data in figure 8. 

 

 

 

4. CONCLUSIONS 

 
It is an important goal to predict electrical test results using in-line metrology.  Initial results from the OCD model show 

insufficient match to the electrical test data, while the combination of OCD and XRF data (hybrid metrology) show much 

better performance.  Combining data from OCD and XRF with a machine learning technique developed by Nova is shown 

to have excellent predictive capability of the ILT data.  Such results can enable further improvement of yield learning, 

process control, and early detection of problematic wafers/lots, as well as the implementation of a more dynamic sampling 

for electrical test measurements.  
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