
Application of scatterometry-based machine learning 

to control multiple electron beam lithography  
AM: Advanced Metrology 

Nivea Figueiro, Francisco Sanchez, Roy Koret, 

Michael Shifrin, Yoav Etzioni, Shay Wolfling, 

Matthew Sendelbach 

Nova Measuring Instruments 

Rehovot, Israel 

nivea-f@novameasuring.com 

Yoann Blancquaert, Thibault Labbaye,              

Guido Rademaker, Jonathan Pradelles, Lucie 

Mourier, Stephane Rey, Laurent Pain 

CEA-LETI, Minatec Campus 

Grenoble, France 

yoann.blancquaert@cea.fr 

 

 
Abstract – The evaluation of scatterometry and machine 

learning for the monitoring of intended critical dimension (CD) 

variations within scatterometry targets is presented.  Such 

variations mimic non-uniformities potentially caused by massively 

parallel e-beam Maskless Lithography (ML2).  Although previous 

results [1] demonstrate that traditional model-based scatter-

ometry can properly quantify these within-target variations, the 

current work shows that the application of scatterometry-based 

machine learning complements the model-based scatterometry 

results.  While model-based scatterometry can provide 

information about structure profile, which can be used to detect 

parameter shifts even in the absence of a reference, machine 

learning provides superb correlation to a defined reference. 

Keywords—machine learning, scatterometry, alternative 

lithography, e-beam lithography, multibeam, multiple e-beam, dose 
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I. INTRODUCTION 

In recent years, several different patterning methods have 
been developed to overcome traditional photolithography 
limitations, including Extreme Ultraviolet Lithography 
(EUVL), Directed Self-Assembly (DSA), Nanoimprint 
Lithography (NIL), Sidewall Image Transfer (SIT) and e-beam 
Maskless Lithography (ML2).  Regarding the last technique, 
massively parallel e-beam direct write has recently started to 
demonstrate advanced patterning capability. But full adoption of 
any such patterning methods must include the development of 
metrology and inspection techniques that can meet the specified 
requirements for production monitoring and control.  

For multibeam Maskless Lithography, beam-to-beam 
variation can consist of changes or differences in beam dose or 
focus [2].  In order to monitor and eventually control such 
variations, a non-destructive, high throughput, precise, and 
accurate metrology method is required.  Scatterometry is a 
commonly used manufacturing metrology method used to 
measure periodic structures; however, it has also been shown to 
measure patterning variation levels of non-periodic structures 
[3].  This ability to quickly and inexpensively detect and 
quantify undesired, non-periodic variations across large regions 
makes scatterometry appealing for such applications.  Previous 
work [1] has already demonstrated the success of scatterometry 

in measuring defects in patterning caused by simulated dose 
variations in multibeam Maskless Lithography.  The measured 
parameter is called the effective CD, which is the average CD 
across a grating of lines with regions of POR (Process of 
Record) CD and intentionally non-POR CD, weighted by the 
areas of those regions. 

II. MACHINE LEARNING 

The present work extends and improves upon this by 
applying machine learning methods to quantify CD variations, 
including the effective CD, caused by beam-to-beam dose shifts.    
Machine learning [4] is the application of Artificial Intelligence 
(AI) methods to provide systems the ability to predict outcomes 
by themselves based on some type of training.   

In order to implement a machine learning solution, training 
and validation steps must be performed.  For the training step, a 
set of signals and their corresponding values are paired.  These 
corresponding values are collected by a reference tool, 
independently from the signals, and are called the reference 
values or reference data.  The data pairs (each signal and its 
reference value) are input into the machine learning algorithm, 
which then “learns” how to accept other signals (similar, but not 
necessarily identical, to those used in the training step) and 
outputs associated values that closely match what the reference 
tool would have provided.  The system is said to be “trained” so 
that the input signals are linked to the reference metrology.  A 
machine learning solution is thus generated from this training 
process.  In the validation step, signals are input into the machine 
learning solution.  The output results are compared to known 
reference results in order to confirm a good correlation.  In this 
work, the machine learning methodology used is called 
“scatterometry-based” because scatterometry spectra are the 
input signals. 

III. STRUCTURE AND DESIGN 

In this work the film stack of the measured structures 
consists of a patterned e-beam resist on top of an Anti-Reflective 
Coating and a Spin-on Carbon (SoC) hard mask (Fig. 1).  Two 
wafers were patterned and measured.  The first was used in the 
previous work [1] from this project, while the second was 
produced more recently using a different lithography process 



 

Fig. 1. Film stack used in this work. 

and printed with targets designed differently than the first wafer.  
The measurement structures for both wafers consisted of 
line/space arrays and were patterned using a Variable Shaped 
Beam tool in a manner to mimic how a multibeam tool at CEA-
LETI [5, 6] might pattern a wafer. 

A. First Wafer Design 

For the first wafer, this mimicking was done by exposing 

each 50 x 50 µm scatterometry target in 25 stripes, each 2 µm 

wide and 50 µm long.  The intentional dose variations, used to 
change line CDs, are implemented within the targets.  The eight 
rows (labeled 0 – 7) indicate the number of e-beams, each 

responsible for patterning a 2 µm wide strip, within the target 
that have a magnitude shift in dose.  The three columns indicate 
the magnitude of the dose shift, nominally measured in nm (2, 
5, 10 nm).  The row 0 target is exposed in a POR manner and so 
has no dose-shifted region.  Fig. 2 shows the specially-designed 
scatterometry targets used for this wafer, and also, in order to 
better understand how intentional dose shifts were incorporated 
into the targets, shows how the targets in row 7 were exposed.  
These targets mimic the shift in dose of the center 7 beams, 

totaling a shifted region that is 14 µm wide through the target’s 
center.  The first wafer contained 9 die that were measured, all 
of which were exposed in a nominally identical manner. 

B. Second Wafer Design 

For the second wafer, the mimicking was done by exposing 

each 100 x 100 µm target in 50 stripes, each 2 µm wide and 

100 µm long.  For non-POR targets, the intentional CD changes 
are manifested in either 1, 3, or 6 of the 50 stripes (target types 
L1, L3, and L6).  For target types L3 and L6, adjacent non-POR 
stripes are separated by a single stripe with POR dose.  Non-
POR targets have magnitudes of nominal line CD shifts in non-
POR stripes ranging from 2 nm to 15 nm.  This wafer’s target 
designs are shown in Fig. 3.  A sample CD-SEM image from a 
portion of one of the non-POR targets is shown in Fig. 4.  The 
image shows part of a non-POR region (smaller line CD) in 
between POR regions (larger line CD).   

 

Fig. 2. Scatterometry target array (left) for the first wafer.  This set of targets 

is copied 9 times across the wafer.  The targets in row 7 have seven 2 µm-wide 

stripes (14 µm in total width) that were exposed with a non-POR dose. 

 

Fig. 3. Scatterometry target design for the second wafer.  There are 18 POR 
targets, each exposed at the POR dose (L0, highlighted in green in rows A, F, 

and G).  The rest of the targets each have either 1, 3, or 6 stripes exposed at the 

non-POR dose (target types L1, L3, and L6).  All targets are 100 x 100 µm.  

The horizontal axis for the target schematics in the legend is not to scale. 

The second wafer contained 13 measured die.  Nine of these 
(“POR die”) were exposed in a nominally identical manner, 
while the other 4 (“DOE die”) were exposed so that the baseline 
dose (the dose of the POR regions of the targets) was varied 
relative to the baseline dose of the other 9 die, causing changes 
in baseline CD.  The CD shifts from POR shown in Fig. 3 are 
relative to the baseline CD of the die in question. 

IV. TMU ANALYSIS AND SAMPLING 

A. Overview of TMU Analysis 

In this work, TMU (Total Measurement Uncertainty) 
analysis is used to assess the measurement quality of the 
scatterometry and machine learning solutions relative to a 
defined reference.  TMU analysis [7, 8, 9] was originally 
developed to be a type of calibration exercise where 
measurements from a Tool under Test (TuT) could be calibrated 
to those of a Reference Measurement System (RMS).  Its most 
common use now, however, is to assess both relative accuracy 
and precision by combining them into a single meaningful 
metric.  Here, relative accuracy is defined as the ability of one 
measurement method to track changes in a measured parameter 
when compared to another measurement method, while being 
insensitive to changes in other parameters and unaffected by the 
average offset between the methods. 

TMU analysis computes the total error (scatter) in a 
correlation between measurements from the TuT and the RMS, 
and states that this total error is the sum of two terms, one of 
which is associated with the TuT and the other is associated with 

all other errors.  The 3σ form of the errors associated with the 
TuT is given by:  

𝑇𝑇𝑇𝑇𝑇𝑇 ≡ 3�𝜎𝜎�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 − 𝑅𝑅𝑇𝑇𝑅𝑅𝑇𝑇2
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 (1) 



 

Fig. 4. A sample CD-SEM image from a portion of a non-POR target.  The 

smaller line CD of the non-POR region is clearly evident.  The width of the 

non-POR region is 2 µm (1 beam). 

where 𝜎𝜎�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2  is the total error in variance form (also called the 
Mandel variance) and RMSU (Reference Measurement System 

Uncertainty) is the 3σ form of the compilation of all other errors, 
most notably those errors associated with the RMS.  The “hat” 
symbol over the sigma indicates that this is an estimated 
quantity.  Although other quantities are also estimated, such as 
TMU and RMSU, for brevity purposes they are not given “hat” 
symbols.  Besides the TMU and slope of the best-fit line, another 
important metric in TMU analysis is the average offset:  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 ≡  �̅�𝑥 − 𝑦𝑦� (2) 

where �̅�𝑥 is the average of the TuT measurements and 𝑦𝑦� is the 
average of the RMS measurements. 

B. Advantages of TMU Analysis 

Different methods are used among semiconductor 
metrologists to determine accuracy, but one of the most common 
methods is Ordinary Least Squares (OLS) regression, where the 
accuracy metric is R2.  TMU analysis has many advantages over 
OLS regression and the R2 metric, including the use of units in 
TMU analysis.  Having an accuracy metric with units matching 
those of the measurement parameter makes it easy to apply 
specifications (specs).  TMU analysis also is not nominally 
affected by the range of the data, so comparisons across different 
data sets and applications are straightforward.  TMU analysis 
takes into account the error of the RMS.  This is not done with 
OLS regression, yet in the semiconductor industry the RMS can 
often be a significant contributor to the scatter when compared 
to the TuT.  Finally, TMU analysis computes meaningful upper 
and lower confidence limits.  Typically, no confidence limits are 
calculated with OLS regression. 

C. Reference Metrology Sampling 

The RMSU can be calculated in different ways [10], 
depending primarily on the metrology sampling.  Reference [1], 
however, extends the methodology for calculating RMSU for 
samples that are nominally non-uniform, like those used here. 

The Reference Measurement System for this work is defined 
to be the critical dimension scanning electron microscope (CD-
SEM).  The use of “defined” here specifically means that the 
CD-SEM is merely used as a benchmark against which the 
scatterometry and machine learning results will be compared, 
and does not mean that the CD-SEM is a “better” measurement.  
Thus, the CD-SEM should be thought of more as an independent 
measurement system to be compared against, and not as the 
“gold standard” measurement system for this application.  This 
is important to understand when comparing both model-based 
scatterometry measurements and machine learning 
measurements of effective CD to the CD-SEM results.  The 
machine learning methods will be shown to have equivalent or 

improved correlation to the CD-SEM reference because the 
machine learning algorithms are designed to do this, regardless 
of the “actual” accuracy of the reference; the scatterometry 
measurements, on the other hand, are only indirectly influenced 
by the reference results (when the model is adjusted to better 
correlate to the reference values). 

As before [1], multiple CD-SEM measurement locations per 
target are used to calculate the effective CD, some in the non-
error regions and some in the error regions (for those targets with 
error regions).  Each location consists of multiple lines measured 
by the CD-SEM.  Because scatterometry measures the average 
CD across its spot, the average CD from the CD-SEM must 
properly take into account the contributions from both the non-
error and error regions in order for a correct comparison to 
occur.  To do this, the average of the measured CDs from the 

non-error region �𝐶𝐶𝐶𝐶����𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� and the average of the measured 

CDs from the error region �𝐶𝐶𝐶𝐶����𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� are weighted by area to 

determine the CD-SEM weighted average CD for the target, 
which is the CD-SEM’s determination of the effective CD:  

𝐶𝐶𝐶𝐶𝑊𝑊𝑀𝑀𝑊𝑊𝑔𝑔ℎ𝑡𝑡𝑀𝑀𝑀𝑀 =  
(𝐴𝐴𝑁𝑁𝑁𝑁)�𝐶𝐶𝐶𝐶����𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� + (𝐴𝐴𝑁𝑁)�𝐶𝐶𝐶𝐶����𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐴𝐴𝑁𝑁𝑁𝑁 + 𝐴𝐴𝑁𝑁  (3) 

where 𝐴𝐴𝑁𝑁𝑁𝑁 is the total area of the non-error regions within the 
scatterometry measurement spot and 𝐴𝐴𝑁𝑁 is the total area of the 
error regions within the spot. 

V. RESULTS 

A. First Wafer 

In the previous work [1], model-based scatterometry results 
from POR and non-POR targets on the first wafer were 
compared to CD-SEM results which were collected from many 
locations, both POR and non-POR regions of each target, and 
properly averaged according to the relative areas of the different 
regions.  Initial results (Fig. 5(a)) of this correlation of the 
effective CD were unexpected (TMU of 3.65 nm), as typical 
TMU results for this type of application are on the order of 1 nm.  
Upon investigation, it was discovered that variations in the slope 
and offset of the best-fit line between scatterometry and CD-
SEM for each die were caused by changes in resist morphology 
due to variation of the resist develop process across the wafer.  
These changes in resist morphology were significant enough to  

  

(a) (b) 

Fig. 5. First wafer effective CD correlation for (a) model-based scatterometry 

and (b) machine learning, each compared to the CD-SEM (equipment system 
“1”).  The correlation is much better for machine learning, largely because it is 

not as susceptible as model-based scatterometry to changes in secondary 

parameters.  All nine die and all of the different types of targets on the first 

wafer are represented. 



cause a variation in CD measurement sensitivity between 
scatterometry and CD-SEM, resulting in the different slopes and 
offsets.  In order to better determine the intrinsic quality of the 
scatterometry measurement, independent of these effects, the 
correlations were redone, but instead calculated on a per-die 
basis.  The resulting TMU (and R2) values (Fig. 6, left side) were 
significantly better, and agreed with expectations. 

Since that work, additional analysis of the spectra was done 
using specialized machine learning algorithms optimized for 
such spectra, using the CD-SEM for training.  Results of the 
machine learning determination of effective CD show 
significantly better correlation to CD-SEM for all die together 
(Fig. 5(b)) as well as improved correlation for the majority of 
the die when analyzed on a per-die basis (Fig. 6, right side). 

B. Second Wafer:  Model-Based Scatterometry 

For the second wafer, the targets with 10 and 15 nm nominal 
CD shifts for their non-POR regions were not included in the 
model-based scatterometry analysis because the focus of the 
work was in detecting smaller shifts, and inclusion of larger 
shifts could impact this sensitivity.  Using different target 
designs and an updated lithography process, the second wafer 
produced an improved correlation between model-based 
scatterometry and CD-SEM (Fig. 7) compared to the first wafer.  
However, the correlation, like in the first wafer, is not as 
expected and shows structure within the scatter, suggesting 
systematic effects.  Analysis of this scatter by differentiating 
according to die number (Fig. 8) and number of non-POR beams 
per target (Fig. 9) reveals structure in both cases.  As in the first 
wafer, die-to-die variation creates best-fit lines with varying 
slopes and offsets.  At least part of this variation is hypothesized 
to be caused by differences in resist morphology caused by 
changes in baseline dose that some of the die received.  For the 
differentiation according to the number of non-POR beams, 
targets L3 and L6 have different slopes compared to L0 and L1.  
The cause for this is hypothesized to be related to the fact that 
L3 and L6 have multiple non-POR beams, perhaps causing 
slight differences in stray electron scattering during exposure 
that affect resist morphology.  In addition, the slightly worse 
correlation (TMU) for L3 further contributes to the scatter in 
Fig. 7.  One contribution to this observation may be related to 
how each of the different non-POR targets breaks the periodicity 
assumption of the scatterometry model.  As was done for the 
first wafer, the correlations were redone using a per-die analysis 
so that the intrinsic quality of the scatterometry measurement  

 

 

Fig. 6. Scatterometry (left side) and machine learning (right side) vs. CD-SEM 

for the first wafer – correlation (TMU and R2) results by die. 

 

Fig. 7. Second wafer correlation of the effective CD between model-based 
scatterometry and CD-SEM (equipment system “2”).  All 13 die and all of the 

different types of targets on the second wafer are represented, except for those 

with a nominal CD shift of 10 or 15 nm. 

could be more closely determined.  The resulting correlations 
(Fig 10, left side) were much better. 

C. Second Wafer:  Scatterometry-Based Machine Learning 

As in the analysis of the model-based scatterometry 
correlation to CD-SEM, the analysis of the machine learning 
correlation to CD-SEM for effective CD did not include the 
targets with 10 and 15 nm nominal CD shifts for their non-POR 
regions.  In this way, the validity of the comparison of both 
methods to CD-SEM is optimized.  Like for the first wafer, the 
correlation of the machine learning results to those of the CD-
SEM (Fig. 11) is improved over the model-based results.  Also, 
the per-die correlations were determined (Fig. 10, right side), 
and are comparable to the model-based per-die results. 

Since scatterometry-based machine learning algorithms can 
be trained using data that do not correspond to traditional 
parameters of interest supplied by scatterometry, an 
investigation was conducted into finding out its effectiveness in 
determining whether it can detect the presence of non-POR 
regions of the target.  Such a capability could be used as a flag 
in development or manufacturing for the presence of one or 
more defective beams.  The reason for this is that, up until now,  

 

Fig. 8. Second wafer correlation of the effective CD between model-based 

scatterometry and CD-SEM (equipment system “2”), differentiated by die.  The 
best-fit line and the values in the table are for the entire data set (all die, as in 

Fig. 7).   



  

(a) (b) 

  

(c) (d) 

Fig. 9. Second wafer correlation of the effective CD between model-based 

scatterometry and CD-SEM (equipment system “2”), separated out by target 

type according to the number of non-POR stripes in the target.  The L0 and L1 
best-fit line slopes are different than those of L3 and L6, contributing to the 

overall scatter seen in Fig. 7.  The relatively larger scatter that the L3 data have, 

as measured by TMU, further contributes to the overall scatter in Fig. 7. 

the CD measurement methods using scatterometry spectra 
(whether model-based or machine learning-based) have not 
been designed to differentiate whether a CD result deviating 
from the target value is due to fewer deviant beams with a larger 
dose shift or more deviant beams with a smaller dose shift.  
Using for training both the number of non-POR stripes in the 
target and the CD shift of those stripes, the machine learning 
algorithms were used to develop a solution that could use the 
scatterometry spectra from a target to measure a factor that is a 
function of the number of non-POR stripes and the CD shift.  
Fig. 12(a) shows the correlation of the machine learning 
measurement to this factor.  For this test, targets containing all 
possible CD shifts shown in Fig. 3 were included; however, only 
the 9 POR die were used in order to simulate a manufacturing 
environment in which the baseline dose is tightly controlled, but 
where small numbers of beams can still have CD shifts relative 
to the baseline.  The TMU of 0.92 (arbitrary units) indicates the  

 

Fig. 10. Scatterometry (left side) and machine learning (right side) vs. CD-SEM 

for the second wafer – correlation (TMU and R2) results by die. 

 

Fig. 11. Second wafer correlation of the effective CD between scatterometry-

based machine learning and CD-SEM (equipment system “2”).  The correlation 
is better than that of scatterometry (Fig. 7), largely because machine learning is 

not as susceptible as model-based scatterometry to changes in secondary 

parameters.  All 13 die and all of the different types of targets on the second 

wafer are represented, except for those with a nominal CD shift of 10 or 15 nm. 

error of the machine learning solution in measuring the factor.  
For this particular function that was used to calculate the factor, 
this TMU result means that the solution is sensitive enough to 
detect the presence of a single non-POR stripe as long as its CD 
shift is at least 0.9 nm, or two non-POR stripes with CD shifts at 
least 0.5 nm, or three non-POR stripes with CD shifts at least 0.1 

nm.  Because TMU is a 3σ parameter, the theoretical confidence 
level of these detection limits is 99.7%.   

The next test also used all of the targets shown in Fig. 3.  
Furthermore, it used the same 9 die used in the previous test, 
plus the two DOE die that have a baseline dose closest to that of 
the 9 POR die (a shift in the baseline CD of roughly 5 nm or 
less).  This test simulates a more challenging environment in 
which the baseline dose (and CD) is less controlled than in the 
first test, effectively introducing another variable (baseline CD) 
that affects the spectra.  Fig. 12(b) shows the correlation, with a 
TMU of 2.1 (arbitrary units).  In this case, this TMU result 
corresponds to a solution that is sensitive enough to detect the  

  

(a) (b) 

Fig. 12. Second wafer correlation of machine learning results to a factor that is 
a function of the number of non-POR stripes in the target and the CD shift of 

those stripes, for both (a) the 9 POR die and (b) the 9 POR die plus 2 of the 
DOE die.  Targets containing all possible CD shifts shown in Fig. 3 were 

included.  Because the TMU represents the 3σ error of the machine learning 

measurement, it can be used to determine the sensitivity of the solution.  For 
the 9 die test, it is sensitive enough to discern a single non-POR stripe with a 

CD shift as little as 0.9 nm.  For the 11 die test, the sensitivity reaches a level 

of 4 nm for a single non-POR stripe. 



presence of a single non-POR stripe with a CD shift of at least 
4 nm, or two stripes with a CD shift of 2 nm, or three stripes with 
a CD shift of 0.8 nm. 

VI. DISCUSSION AND CONCLUSIONS 

The support of multiple e-beam Maskless Lithography 
(ML2) for manufacturing applications requires high throughput, 
non-destructive, and accurate metrology for the detection of 
defects specific to this lithography.  In this work, defects caused 
by electron beam-to-beam dose variation were intentionally 
printed, and then measured using model-based scatterometry, 
scatterometry-based machine learning, and CD-SEM methods. 

Initially, the weighted average CD within the target, or 
effective CD, was evaluated for scatterometry and machine 
learning, using CD-SEM as the defined reference.  It is noted 
that CD-SEM is defined as the reference because it is an 
independent, high throughput, and well understood metrology, 
but is not necessarily intrinsically more accurate than the other 
methods.  Results reveal that individual per-die correlations of 
effective CD between scatterometry and CD-SEM are 
significantly stronger than entire-wafer correlations.  It is 
hypothesized that this is primarily due to the circumvention of 
across-wafer resist morphology variation effects in the per-die 
correlations. 

The scatterometry-based machine learning measurement of 
effective CD was trained using the CD-SEM measurement and 
specialized algorithms.  An independent metrology method was 
needed as the reference in order to demonstrate the capability of 
machine learning to correlate well to that reference for this non-
standard application.  Results show that machine learning 
performed better than scatterometry for correlations using data 
from the entire wafer because machine learning is much less 
susceptible (or not susceptible at all) to physical  characteristics 
or anomalies that can affect model-based scatterometry.  When 
such anomalies are minimized, the model-based scatterometry 
correlations are improved. 

As a next step into the machine learning capabilities, an 
investigation into its ability to flag one or more defective stripes 
in a target was performed.  This ability goes beyond that of 
measuring effective CD, as the latter cannot differentiate 
between how many defective stripes are present versus the size 
of the average CD shift of those stripes.  An algorithm was 
developed that enabled the method to be sensitive to detecting 
CD shifts less than 1 nm for a single stripe in the target for 
simulated manufacturing conditions.  Thus, machine learning 
not only demonstrated its ability to measure the effective CD, 
but also its sensitivity in differentiating a target with very small 
beam defects from a target with no beam defects. 

This work highlights the concept that model-based 
scatterometry and scatterometry-based machine learning 
measurements can be used in a complementary manner.  Model-
based scatterometry does not rely on large amounts of reference 
data and provides sensitivity to profile information, while 
machine learning provides a “direct link” to the defined 
reference (often resulting in better correlation to that reference), 
insensitivity to other parameters (that often affect model-based 
scatterometry measurements), and a faster time-to-solution once 
the reference data is available.  Additional research will explore 

the use of additional hardware channels as well as the detection 
of other types of multiple e-beam exposure defects. 
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