June 2018

Analyst & Investor Day

PROCESS INSIGHT

Cautionary Statement Regarding Forward Looking Statements

his presentation includes statements that constitute forward-looking statements within the meaning of safe harbor provisions of the Private Securities Litigation Reform Act of 1995 relating to future events or our future performance, such as statements regarding, but are not limited to, anticipated growth opportunities and projections about our business and its future revenues, expenses and profitability. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to be materially different from any future results, levels of activity, performance or achievements expressed or implied in those forward-looking statements. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are in some cases beyond our control. Factors that may affect our results, performance, circumstances or achievements include, but are not limited to the following: our dependency on three product lines; our dependency on a small number of large customers and small number of suppliers; the highly cyclical and competitive nature of the markets we target and we operate in; our inability to reduce spending during a slowdown in the semiconductor industry; our ability to respond effectively on a timely basis to rapid technological changes;; our dependency on PEMs; risks related to exclusivity obligations and non-limited liability that may be included in our commercial agreements and arrangements; our ability to retain our competitive position despite the ongoing consolidation in our industry; risks related to our dependence on our manufacturing facilities; risks related to changes in our order backlog; risks related to efforts to complete and integrate current and/or future acquisitions; risks related to the worldwide financial instabilities; risks related to our intellectual property; new product offerings from our competitors; unanticipated manufacturing or supply problems; risks related

to government programs we participate in; risks related to taxation; changes in customer demand for our products; risks related to currency fluctuations; risks related to technology security threats and changes in privacy laws; risks related to acquisitions we may pursue and risks related to our operations in Israel. We cannot guarantee future results, levels of activity, performance or achievements. The matters discussed in this presentation also involve risks and uncertainties summarized under the heading "Risk Factors" in Nova's most recent Annual Report on Form 20-F for the year ended December 31, 2017 filed with the Securities and Exchange Commission on February 28, 2018. These factors are updated from time to time through the filing of reports and registration statements with the Securities and Exchange Commission. Any forward-looking statements contained in this presentation are made as of the presentation date and Nova Measuring Instruments Ltd. is under no obligation to revise or update these forward-looking statements. This following presentation includes financial measures that are not calculated in accordance with generally accepted accounting principles (GAAP). The presentation of this non-GAAP financial information is not intended to be considered in isolation or as a substitute for the financial information prepared and presented in accordance with GAAP. Nova's earning release, including a presentation of the most directly comparable financial measures calculated and presented in accordance with GAAP and a reconciliation of each GAAP to non-GAAP financial measure discussed in the presentation is available at the Investors section of the company's website. Certain of the information contained herein concerning economic trends and performance is based upon or derived from information provided by third party consultants and other industry sources. We have not independently verified and cannot assure the accuracy of any data obtained by or from these sources.

Eitan Oppenhaim – President & CEO

- President and Chief Executive Officer since 2013
- Joined Nova in 2010 as the Global Business Group Executive Vice President, responsible for the company's customers facing groups, including Global Business and Sales, Marketing and Delivery
- Served in several executive positions with global companies in the **Electronics and Telecom industries**
- Served as Vice President at Orbotech, where he led the Flat Panel Display global business teams, located in Asia
- Holds a BA in Economics and an MBA

The Team

Performance, Strategy & **Growth Plans**

Eitan Oppenhaim, President and CEO

Sustained Profitable Growth

Dror David, CFO

Market Review & Growth Trajectory

\mathbf{V}

Zohar Gil, Marketing & Business Development Corp. VP

Disruptive **Innovation for Emerging Market**

Dr. Shay Wolfling, CTO

 \downarrow

We'll Cover Today

Markets are healthy & fueled by multiple drivers

Emerging digital revolutions

Multiple high end applications

Technology inflections to meet challenges Nova is well positioned to continue growing

V

Growing demand for metrology

Differentiated portfolio with cutting edge benefits

Elevated investment in disruptive innovation

WELL POSITIONED TO OUTGROW

Operational efficiency to support growth

Efficient LT model

Execution track record

Profitable growth

KEY Facts

Leading Metrology Innovator for Advanced Process Control

Dimensions & Materials

2017 PROFITABLE **GROWTH**

Revenues 35% - 222M\$ 🕥

> Market cap **101%** (YoY)

Cash Reserves \$150M 🕥

Success Tied to FUNDAMENTALS

Diversified Portfolio

- X-ray & Optical
- Dimensions & Materials

Customers' partnership

- Development to Manufacturing
- Joint development programs

Æ.

Solid financial model

- Operational efficiency
- Growth by investment

Revenue

Operating

income

In Million \$

\$22

\$14

2013 2015 2017 Non GAAP financials

Confidential & proprietary information

uring ms

Innovative TECHNOLOGY

Confidential & proprietary information

Unique Complementary SOLUTION

Materials

- → Standalone
- → Materials Properties

Services

- → Install Base Support
- → Features UG & Utilization

REVENUE GROWTH Track Record

In Million \$

Q1 2018 Highlights

- → Record Revenue \$62.6M
- → Record Profit \$15.4M
- → H1 Growth 10% YoY
- → Elevated R&D Investment
- → Diversification:

Why do we CONTINUE GROWING?

Mix nodes

		5.7540	Dr.	
			0.75	
		86 560	86 560	
			0.7540	
		86 560	86 560	86
	▲ 0.650		57.030	57.0
0			5.7540	5.754
	A 807.5	0.7540	0.7540	0.754
0	A 540.5	86.560	86.560	86.56

From Nova200 to

Reaching revenues of \$300M organically Dimensional
 Metrology

\$300M «-----

\$200M «-----

Sustained Profitable Growth

Dror David, Chief Financial Officer

© Nova confidential & proprietary information

Dror David – **Chief Financial Officer**

- Mr. Dror David was appointed as Nova's Chief Financial Officer in 2005. Mr. David joined Nova in April 1998, as the Company's Controller, and since then served in various financial and operational positions, including the position of Vice President of Operations, in which he was responsible for the finance, operations, information systems and human resources functions of the Company
- Mr. David played a key role in the Company's initial public offering on NASDAQ in 2000. He led the Company's private placement in 2007 and secondary public offering in 2010. Prior to joining Nova, Mr. David spent five years in public accounting with Delloitte Touch in Tel Aviv, specializing in industrial high-tech companies
- Mr. David is a Certified Public Accountant in Israel, holds a B.A. in Accounting and Economics from Bar Ilan University, and an M.B.A. from Derby University of Britain

Executing on Profitable Growth

Executing on Our Profitable Growth Commitments

* Non-GAAP Financials

Financial Outperformance Continues

- Achieved 2X the Peer Group Growth Rate
 Grew Operating Income at 3X Revenue
 Delivered >75% EPS Growth Year Over Year
 - Generated >\$55M Free Cash Flow (25% of revenue)

Historical Outperformance Track Record

* Non-GAAP Financials.

Achieved > 3X Process Control CAGR
Grew operating income at > 2X Revenue CAGR
Delivered 30% Non-GAAP EPS CAGR
Generated > \$120M in Operating Cash Flow

Diversification

Diversification - Customer Exposure

- Foundry Leadership
- Memory Growth

Diversification - Regional Exposure

- China & Korea Growth •
- 3 Large Territories

Diversification - Segments

22

Balanced Exposure

- Leading & Trailing Edge
- Mitigating Seasonality

Diversification - Technology

R&D Investments and Acquisitions

23

2014-2017 Growth

Target Financial Model

Gross Margins - Products & Services

* Non-GAAP Financials.

Targets:

- Products Gross Margins of 61%-64%
- Services Gross Margins 35%-40%

Gross Margins - Blended

Revenues and Gross Margins 2012 to 2017

* Non-GAAP Financials.

Revenues		
 Gross 	Margin	

Gross and Operating Margins

Gross Margin [%]

Nova300 Model 56%-59%

* Non-GAAP Financials.

27

Operating Margin [%]

2015

2017

Nova300 Model 26%-29%

Outperformance

Revenue Growth [\$M]

* Non-GAAP Financials.

• Unique differentiated offering

- Disruptive innovation
- Inorganic growth >\$50M revenues
- New emerging metrology markets
- Solid operational model

Revenue Doubled Every 5 Years

Market Review & Growth Potential

Zohar Gil, Corporate VP Marketing & BD

© Nova confidential & proprietary information

Zohar Gil – Corporate VP Marketing & BD

- Joined Nova as head of marketing in 2011
- Led Nova Foundry business mgmt. in APAC during 2014-15
- Appointed Corp VP Marketing & BD in 2016
- Prior to Nova, was General Manager for the Carrier Line of Business and Vice President of Product Management at Alvarion Ltd.
- B.Sc. in Industrial Engineering from Tel-Aviv University and **Executive MBA from Northwestern and Tel-Aviv Universities**

Market Review Outline

Positive Outlook for Continued Growth

Driving growth in Semiconductor CAPEX

Increasing Metrology Intensity
 Growth in Dimensional & Materials Metrology

Business Growth and Diversification

Increasing Addressable Market

Multiple Catalysts for Semiconductor Demand

Demand for Semiconductor will triple in 2025

Cryptonomy 30% CAGR

AR / VR 70% CAGR

Semiconductor Revenue

+12%

Key Takeaways

- All semiconductor major segments are growing significantly
- **Memory** (DRAM, NAND) leading this growth
- **Foundry** expected to pick up in coming years

Semiconductor Growth Drivers

Semi Growth

- Electronics market growing consistently (also due to GDP resilience)
- Content also growing over time, driven by both mobile & IoT, likely to continue

Capacity Demand Driving Investment

Key Takeaways

- NAND Demand growth of over 35% per year driven by high end smartphones and SSD
- **DRAM** Demand growth of over 20% driven by Smartphones and Servers
- **Capacity** Continued increase in memory capacity driving investment

Industry Inflection Points (Logic/DRAM/NAND)

Inflection points in all major IC segments, driving significant investments in:

- Advanced memory nodes Flash, DRAM and combinations (Xpoint) •
- Logic advanced nodes scaling, new dimensions and materials

Semiconductor CAPEX

WW Semiconductor CAPEX by Technology, \$B

Source: Gartner, IC Insights

Key Takeaways

- CAPEX growing significantly in both 2018, and 2019
 - DRAM and NAND overperforming ٠
 - Foundry/logic regaining momentum in 2018/2019 •

Applications Growth Projection

Increasing Complexity = Rising Metrology Intensity

Source: company data

39

NO

China's IC Strategy of Massive Investment

China's Semiconductor Industry Investment Funds

Fund	Amount	Purpose		
China Government Fund for National IC Industry Support	120B RMP (\$19.5B)	National Level Support for IC Industry 40% wafer manufacturing, 30% chip design, 30% wafer packaging		
Local Government and Private Equity investment in China	600 Billion RMP (\$97.4B)	Promote and support IC industry, key enterprises, projects and innovation		
Source: IC Insights Made in China 2025 Strategic Objective				
china	7	0%		
O L DI DI 20%	40%			
Current Source: IC Insights	2020 20	025		
Objective: Reach 70% Self Sufficiency in IC Production by 2025				

- Tool-of-Record position in major IC establishments
- Dimensional and Materials metrology
- Memory and Foundry customers

Growth Drivers – Advanced Nodes

Source: Company data

42

Matching Foundry Spending

- > 40% from trailing nodes
- ➢ 60% in advanced nodes
- > Optical and Material Metrology solutions

Nova Versus Industry Performance Benchmark

Exceeding Industry Benchmark – Growing Market Share

- Multi-year growth exceeding Process **Control and Metrology**
- Contributed by:
 - Leading position in IM market
 - Growth in SA CD and material metrology
 - Business growth in China
 - Growth in memory customers

Growing TAM – Market Exposure

Growing Addressable Market

44

New TAM expansion:

- Material-Dimensional Integration
- Lab to Fab Metrology
- Machine Learning & Big Data
- > Expand IM to new process steps

Disruptive Innovation for Emerging Market

Shay Wolfling, PhD, Chief Technology Officer

© Nova confidential & proprietary information

Shay Wolfling – Chief Technology Officer

- Joined Nova as CTO in 2011
- R&D manager at KLA-Tencor-Belgium, leading metrology & inspection development projects
- Founder and VP R&D of Nano-Or-Technologies, a start-up company with a proprietary technology for 3D optical measurements, acquired in 2005
- B.Sc. in physics & mathematics, and a PhD in physics from the Hebrew University of Jerusalem

elgium, leading multidisciplinary projects

Process Challenges – Metrology Opportunity

Differentiated Technology Directions

Variety of Different Requirements

DATA RATE (Giga operations/sec)

Logic Roadmap Enablers

Device Scaling

- Shrink
- Multi Patterning
- EUV
- Alternative Litho: DSA, Multi E-beam, Nano-Imprint
- Atomic Layer **Etch & Deposition**

Vertical Integration

- 3D Transistors
- Vertical architecture
- FinFETs
- Gate-All-Around -Multiple Nanowires
- Films on structure

Environment Rich in CD & Material Metrology Opportunities

49

Novel Materials

- HKMG stack control
- Complex Epi process
- BE: alternative metals
- Channel stress
- On-structure material
- III-V & Ge materials

High Performance Logic Roadmap

50

NOV

Various Types of Memory

Memory Roadmap Enablers

Scaling (DRAM)

- Scaling capacitors
- Multiple patterning (Quadruple & Octuple)
- Multiple CDs & profile @ Litho & Etch
- Pitch walking
- Tighter tolerance per step

Vertical Integration

3D NAND

- Multi-Layers > 128
- 1:60 Aspect Ratio
- Underlayer Logic

DRAM

- High Aspect-Ratios
- "Buried" structures

Environment Rich in CD & Material Metrology Opportunities

52

Novel Materials

- **3DNAND:** Complex stacks of new-materials
- **DRAM:** Advanced materials (High-K)
- **MRAM**: new materials with critical properties
- Conformal deposition

Memory Roadmap

	2018/9		3-5 years	
Embedded Memory	STT MRAM (N18-N14)		STT MRAM (N5) SOT MRAM	
DRAM	Pillar D16		Pillar, FE, STT MRAM <d10< td=""><td></td></d10<>	
Storage Class Memory	Cross-point Phase Change Memory		Multi-Level Cross-Point Resistive RAM	top electrode LRS bottom electrode HRS
3D NAND	96-128 Tiers		>512 Tiers	

NOV

Technology Inflection Points

Complex Inflection Points – Metrology Growth Driver

Logic – Key Metrology Challenges

FinFET

- Multiple parameters
- On-structure metrology
- Material & Dimensional
- Ultra thin film on structure
- HKMG stack control
- Complex Epi process

Nano-Wires

- Complex stack (Ge / Si)
- Multiple Nanowires additional variability of dimensions
- Vertical architecture geometrical challenges

55

BEOL

- Multi-patterning SAQP and beyond
- EUV Roughness control
- Alternative metal properties
- New processes selective deposition

3D NAND – Key Metrology Challenges

Multi-Tiers, High-Aspect-Ratio, Bottom Parameters

Intensity Growth Beyond Demand

Metrology Intensity

Complexity

Complex transitions - Environment rich in opportunities

57

Nano-Wires

VNAND Gen-x

Growing Complexity =

Growing Intensity

Differentiated Technology Directions

Nova's HW & SW Interlaced Solutions

Innovative Technological Directions

Compete with unique **Coupled** HW/SW solutions

Divert from the crowded landscape – lead the **Emerging Metrology** markets

Invest in Cooperation

> Lab to Fab Metrology

© Nova confidential & proprietary information

60

Invest in **Sustaining** and **Disruptive** innovation

From single tool to **Fleet** approach infrastructure

Material-Dimensional Integration

& Big Data

Material-Dimensional Integration

Conventional Perspective – Separate Metrology

	Material Metrology	Dimensional M
Technology	X-Ray (XPS, XRF)	Optical (OCD)
Modeling	Direct measurement	Physical modeli

New Directions

- Combine Material & Dimensional on-structure metrology
- Adding modeling value for all metrology
- Optical technologies for material metrology
- X-Ray for dimensional metrology

etrology
ng

Optical Technologies for Material properties

X-Ray Technologies for Dimensional measurements

Example - FinFET Epi Challenges

Dimensional Challenges

- SiGe (1-3)
- Poly-Si (4-5)
- Spacer (6)
- High-K MG thickness
- Complete Fin morphology
- Variability (device, wafer)

Optics and X-Ray for On-Structure Material & Dimensional Metrology

- Ge composition
- Stress & Strain
- Doping (B & P)
- HKMG composition •
- Alternative Channels (III-V materials)
- **On-structure**

Metrology Eco-System – In-Line & Reference

Example: Hybrid Optics & X-Ray

FEOL Gate use case: Two ultra thin layers on structure

- Optics cannot accurately resolve the layers
- X-Ray cannot resolve profile from IL

Only XPS + Optical CD combination can resolve both layers on structure

64

Normalized TMU	Norm. TMU UL	TMU LL
0.28	0.30	0.26
Slope	3σ Slope	Data Pairs
1.02	0.06	335

Hybrid-enabled Thin Film Metrology using XPS and Optical, A. Vaid et al, SPIE Adv. Litho. 9778, 2016

Big Data & Machine Learning - Key Semi Drivers

Increase in Process **Complexity** (3D integration, complex materials)

Machine Learning

Increasing challenges to achieve **Yield** fast enough

Huge **amount** of data collected in the fab

Example: Machine Learning in Metrology

Inline: Integrated / SA Minutes

Reference: TEM / Electrical Test Days / Weeks

Outcome → Optical measurements predicting electrical-tests parameters → Reference-metrology quality early in the process

- "Train" complex connections between inline data & reference data
- Combine with physical modeling knowhow
- In production: use the inline data to "predict" the reference

Lab To Fab Metrology

Variety of Metrology Technologies

Variety of Physical Properties

LAB

Summary

- Process challenges metrology opportunity
- **Broad portfolio** of differentiated solutions
 - **Dimensional & Material**
 - Integrated & Stand-alone
 - Optics & X-Ray
 - Hardware & Software

Innovative technology for increased TAM

- Material-Dimension Synergy ۲
- Disruptive Technologies to control Variety of Physical Properties \bullet
- Connected Metrology Eco-system \bullet

Differentiated Technology Roadmap to Meet Industry Challenges

We Covered Today

Growth Strategy

Diversification as Key

\$300M Plan - Organically

Built to grow

- Healthy demand
- Inflection points

Technology Innovation

MS Growth in growing TAM

New Emerging Technologies

Differentiated Direction

- SW & HW
- Hybrid Eco system •

WELL POSITIONED TO OUTGROW

Profitable Growth

Efficient financial model

Execution track record

Elevated investment to generate the next growth

Thank You

